

Виртуальный курс физики

МЕХАНИКА

Лекция 1. Кинематика.

ТЕОРИЯ, ЗАДАЧИ, ПОДГОТОВКА К ЕГЭ

Уважаемые друзья!

Вы выбрали Петербургский государственный университет путей сообщения Императора Александра I и поступили, несомненно, правильно!

Наш университет основан в 1809 году. Это старейший инженерный транспортный вуз России. Это "особенный институт" - так в манифесте назвал его Император Александр I.

Для того, чтобы успешно пройти вступительные испытания и стать студентом одного из лучших технических вузов России, необходимо иметь высокую подготовку по физике.

Как правило, уровень подготовки выпускников школ не всегда соответствует требованиям, предъявляемым к поступающим в высшие учебные заведения. Повысить этот уровень и качественно подготовиться к вступительным испытаниям по физике в технический университет помогут преподаватели факультета довузовской подготовки.

Факультет довузовской подготовки организует и проводит курсы по подготовке к поступлению в вуз по программам, соответствующим требованиям ЕГЭ.

Занятия проводятся по очной и заочной формам обучения. Занятия по очной форме обучения проводятся в дневное время - с 16.25 (тел. 457-84-04), и в вечернее время - с 18.00 (тел. 457-87-83). Мы с удовольствием ответим на все Ваши вопросы.

Курс дистанционного обучения по физике изложен в авторской редакции доцента Петербургского государственного университета путей сообщения Императора Александра I Кытина Юрия Александровича

МЕХАНИКА

Лекция 1.

Тема: Кинематика. Траектория, путь, перемещение. Скорость, ускорение. Равномерное прямолинейное движение. Закон сложения скоростей. Равнопеременное прямолинейное движение. Свободное падение тел. Движение тела, брошенного вертикально вверх. Движение тела, брошенного под углом к горизонту. Равномерное движение по окружности.

1.1. Основные понятия и определения

Механика изучает наиболее простую форму движения материи – механическое лвижение.

Механическим движением называется изменение положения тела или его частей в пространстве относительно других тел с течением времени.

Тело, относительно которого рассматривается данное механическое движение, называется телом отсчета.

Во многих задачах механики размеры и формы тела, движение которого рассматривается, можно не учитывать. Тело, размерами и формой которого в условиях данной задачи можно пренебречь, называется материальной точкой. В тех случаях, когда размерами нельзя пренебречь, его рассматривают как абсолютно твердое тело - тело, размеры и форма которого остаются неизменными при любых внешних воздействиях. Простейшими видами движения такого тела являются поступательное и вращательное движения.

Поступательным движением тела называется движение, при ко-

тором все точки тела движутся по одинаковым траекториям и любая прямая, соединяющая две произвольные точки тела, остается параллельной самой себе во время движения. Поступательное движение тела может быть охарактеризовано движением какой-либо одной его точки.

Вращательным движением тела называется движение, при котором все точки тела описывают окружности, находящиеся в параллельных плоскостях, а центры окружностей лежат на

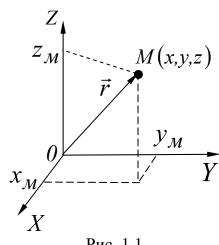


Рис. 1.1

одной прямой, перпендикулярной этим плоскостям. Эта прямая называется *осью вращения*.

Положение тела в пространстве задается с помощью координат. В **прямоугольной системе координат** его положение определяется тремя **координатами** x, y, z или **радиусом** – **вектором** \overrightarrow{r} , соединяющим начало координат с точкой в пространстве (рис. 1.1).

Совокупность тела отсчета, системы координат и прибора для измерения длительности промежутков времени называется *системой отсчета*.

При движении тела его координаты и радиус-вектор непрерывно изменяются. Зависимости этих величин от времени (x=x(t), y=y(t), z=z(t)) или $\vec{r}=\vec{r}(t)$ называются кинематическими уравнениями овижения.

Вид механического движения зависит от выбора системы отсчета, которой это движение рассматривается. В этом заключается *относительность механического движения*.

1.2. Траектория, путь, перемещение

Траекторией называется линия, вдоль которой движется материальная точка. По виду траектории различают *прямолинейное* и *криволинейное* движения. Вид траектории зависит от выбора системы отсчёта, в которой рассматривается данное движение.

 ${\it Путь}\ S$ — скалярная положительная величина, равная длине участка траектории, пройденного движущейся точкой за определенный промежуток времени.

Перемещение $\Delta \vec{r}$ — вектор, соединяющий начальное и конечное положение движущейся точки (рис.1.2), $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$.

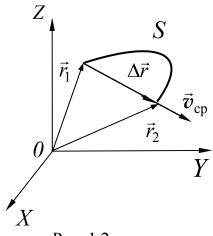


Рис. 1.2

Если материальная точка участвует в нескольких движениях одновременно, то результирующее перемещение точки будет равно геометрической сумме перемещений, совершаемых ею в каждом из этих движений.

1.3. Скорость, ускорение

Скорость — физическая величина, характеризующая быстроту изменения положения тела в пространстве.

Средняя скорость перемещения $\vec{v}_{\rm cp}$ — векторная величина, равная отношению вектора перемещения $\Delta \vec{r}$ к длительности промежутка времени Δt , в течение которого это перемещение совершено:

$$\vec{v}_{\rm cp} = \frac{\Delta \vec{r}}{\Delta t}$$
.

Вектор средней скорости $\vec{v}_{\rm cp}$ совпадает по направлению с вектором перемещения $\Delta \vec{r}$ (рис. 1.2).

Средняя путевая скорость $v_{\rm cp}$ — скалярная положительная величина, равная отношению пути S к длительности промежутка времени Δt , в течение которого этот путь пройден:

$$v_{\rm cp} = \frac{S}{\Delta t}$$
.

В общем случае средняя путевая скорость не равна модулю средней скорости перемещения. Равенство выполняется только при прямолинейном движении материальной точки без изменения направления движения.

Мгновенная скорость $\vec{v}(t)$ или скорость точки в данный момент времени t – это предел, к которому стремится средняя скорость при неограниченном уменьшении промежутка времени Δt :

$$\vec{v}_{(t)} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}.$$

Из этого определения следует, что скорость $\vec{v}(t)$ представляет собой производную по времени радиус-вектора:

$$\vec{v}(t) = \overset{\rightarrow}{r'}(t)$$
.

Вектор мгновенной скорости \vec{v} в каждой точке траектории (т.е. в каждый момент времени) направлен по касательной к траектории в этой точке (рис.1.3).

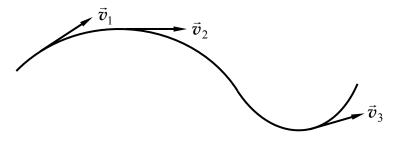


Рис. 1.3

В международной системе единиц СИ путь, пройденный телом, измеряется в метрах (M), время - в секундах (C), а скорость — в метрах в секунду (M/C).

По характеру изменения модуля мгновенной скорости различают равномерное и неравномерное движение. Движение точки называется *равномерным*, если модуль её мгновенной скорости не изменяется с течением времени (v = const). Если модуль мгновенной скорости зависит от времени (v = v(t)), то движение точки называется *неравномерным*.

 $y_{c\kappa openue} \ \vec{a} - \phi$ изическая векторная величина, характеризующая быстроту изменения скорости.

Средним ускорением $\vec{a}_{\rm cp}$ называется векторная величина равная отношению изменения скорости $\varDelta \vec{v} \ (\varDelta \vec{v} = \vec{v}_2 - \vec{v}_1)$ точки к длительности промежутка времени Δt , в течении которого это изменение произошло:

$$\vec{a}_{\rm cp} = \frac{\Delta \vec{v}}{\Delta t}$$
.

Вектор среднего ускорения $\vec{a}_{\rm cp}$ совпадает по направлению с вектором изменения скорости $\Delta \vec{v}$ (рис. 1.4). Ускорение измеряется в метрах в секунду в квадрате ($\textit{м/c}^2$).

При движении материальной точки вектор скорости может изменяться как по модулю, так и по направлению (рис. 1.5). Составляющая ускорения \vec{a}_n , направленная перпендикулярно вектору \vec{v} , к центру кривизны

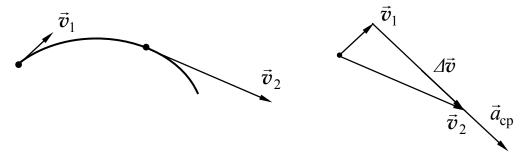


Рис. 1.4

траектории в данной точке, называется *нормальным* или *центростреми- тельным* ускорением. Составляющая a_{τ} , параллельная вектору \vec{v} , называется касательным (тангенциальным) ускорением.

Нормальное ускорение характеризует изменение вектора скорости по направлению, а касательное – изменение модуля скорости.

Модуль вектора ускорения:

$$a = \sqrt{a_\tau^2 + a_n^2} \ .$$

По форме траектории и характеру изменения модуля скорости различают следующие виды механических движений: прямолинейное равномерное, прямолинейное неравномерное, криволинейное равномерное и криволинейное неравномерное.

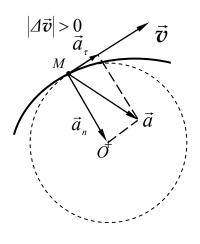


Рис. 1.5

1.4. Равномерное прямолинейное движение

Равномерным прямолинейным движением материальной точки называется движение, при котором вектор мгновенной скорости точки остаётся неизменным как по модулю, так и по направлению: $\vec{v} = \text{const.}$

При этом виде движения средняя скорость за любой промежуток времени равна мгновенной скорости: $\vec{v}_{\rm cp} = \vec{v}$. Если начальный момент времени t_0 принять равным нулю $(t_0 = 0)$, то $\Delta t = t - t_0 = t$ и скорость в любой момент времени будет

$$\vec{v} = \frac{\Delta \vec{r}}{t}$$
, а ее модуль $v = \frac{\Delta r}{t}$.

Так как, при равномерном прямолинейном движении модуль перемещения Δr равен пройденному пути S ($\Delta r = S$), то

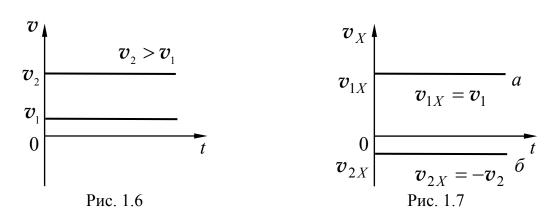
$$v = \frac{S}{t}$$
.

Различают два вида графика скорости:

- график зависимости модуля скорости от времени v = v(t);
- график зависимости проекции вектора скорости на ось координат от времени $\boldsymbol{v}_X = \boldsymbol{v}_X(t)$, $\boldsymbol{v}_Y = \boldsymbol{v}_Y(t)$, $\boldsymbol{v}_Z = \boldsymbol{v}_Z(t)$.

График v = v(t) при равномерном движении представляет собою прямую линию параллельную оси времени (рис. 1.6). Вид графиков $v_X = v_X(t)$, $v_Y = v_Y(t)$, $v_Z = v_Z(t)$ зависит от взаимного направления вектора скорости \vec{v} и положительного направления осей координат. На рисунке 1.7 представлены графики $v_X = v_X(t)$:

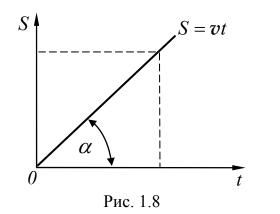
- а) скорость \vec{v}_1 точки совпадает с положительным направлением оси OX, совмещённой с траекторией прямолинейного движения тела;
- б) скорость \vec{v}_2 точки направлена противоположно положительному направлению оси OX.



Путь S, пройденный точкой при равномерном прямолинейном движении, за промежуток времени t, как это следует из формулы для модуля скорости, равен S=vt.

График пути S=S(t) представляет собой прямую линию, идущую под углом α к оси времени (рис. 1.8). При этом численное значение скорости совпадает с тангенсом угла наклона прямой к оси θt : $v=tg\alpha$.

Пройденный за промежуток времени Δt ($\Delta t = t_2 - t_1$) путь S можно определить с помощью кривой зависимости v = v(t) (рис. 1.9). Для прямолинейного равномерного движения путь S численно равен площади прямоугольника, ограниченного линией графика, осью времени и перпендикулярами, восстановленными в точках t_1 и t_2 . Этот вывод справедлив для любой зависимости v = v(t).



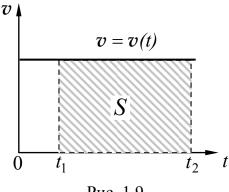


Рис. 1.9

Уравнение для координаты точки, движущейся равномерно и прямолинейно, можно получить, выразив из формулы для скорости равномерного прямолинейного движения вектор перемещения: $\Delta \vec{r} = \vec{v} \cdot \Delta t$.

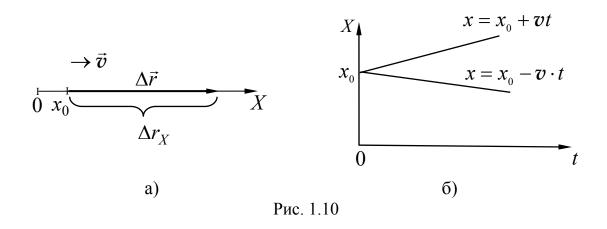
Действительно (рис. 1.10, a), если в моменты времени $t_0 = 0$ и t координаты точки, движущейся вдоль оси OX, равны x_0 и x, то проекция вектора перемещения за промежуток времени $\Delta t = t - t_0 = t$ $\Delta r_{_{X}} = x - x_{_{0}}$ или $x - x_{_{0}} = \pmb{v}_{_{X}} t$. Тогда уравнение для координаты точки в момент времени t запишется следующим образом:

$$x = x_0 + v_X t,$$

где $\boldsymbol{v}_{\boldsymbol{X}}$ – проекция вектора скорости $\vec{\boldsymbol{v}}$ на ось $O\!X$, совмещённую с траекторией прямолинейного движения материальной точки.

В этом уравнении $\boldsymbol{v}_X = \boldsymbol{v}$, если направление вектора скорости $\vec{\boldsymbol{v}}$ совпадает с направлением оси OX и $\boldsymbol{v}_X = -\boldsymbol{v}$, если эти направления противоположны.

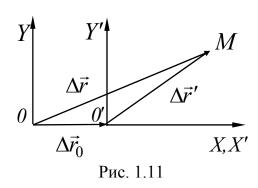
Примеры графиков зависимостей координаты точки от времени при равномерном прямолинейном движении показаны на рис. 1.10, б.



1.5. Закон сложения скоростей

Этот закон устанавливает связь между скоростями \vec{v} и \vec{v}' материальной точки M в двух разных системах отсчета, одна из которых XOY непод-

вижна, а вторая X'O'Y' движется относительно первой со скоростью \vec{u} , таким образом, что оси остаются параллельными (рис. 1.11). Пусть за промежуток времени Δt точка переместилась на $\Delta \vec{r}'$ в системе отсчета X'O'Y', а сама система X'O'Y' переместилась относительно системы XOY на $\Delta \vec{r}_0$.



Перемещение $\Delta \vec{r}$ точки в системе XOY равно сумме перемещений:

$$\Delta \vec{r} = \Delta \vec{r}' + \Delta \vec{r}_0$$

Разделив это равенство на Δt , получим:

$$\vec{v} = \vec{v}' + \vec{u},$$

где \vec{v} – скорость тела по отношению к неподвижной системе отсчёта XOY;

 $ec{oldsymbol{v}}'$ – скорость тела в подвижной системе отсчёта X'O'Y';

 \vec{u} — скорость движения системы отсчёта X'O'Y' относительно неподвижной системы отсчёта XOY.

Полученное соотношение выражает закон сложения скоростей:

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы относительно неподвижной.

Закон сложения скоростей для случая прямолинейного движения тела и подвижной системы отсчёта вдоль оси OX сводится к уравнению вида:

$$\boldsymbol{v}_{X} = \boldsymbol{v}_{X}' + \boldsymbol{u}_{X}.$$

1.6. Равнопеременное прямолинейное движение

Равнопеременным прямолинейным движением называется движение, при котором ускорение точки не зависит от времени: $\vec{a} = \text{const.}$

Скорость точки в любой момент времени при прямолинейном равнопеременном движении определяется выражением:

$$\vec{\boldsymbol{v}} = \vec{\boldsymbol{v}}_0 + \vec{\boldsymbol{a}}t \,.$$

В проекциях на ось OX, направленную вдоль прямолинейной траектории, этому уравнению соответствует скалярное уравнение

$$\boldsymbol{v}_X = \boldsymbol{v}_{0X} + a_X t.$$

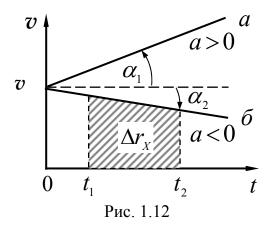
Прямолинейное равнопеременное движение называется *равноуско- ренным*, если направления векторов \vec{a} и \vec{v} совпадают (в этом случае $v_{0X} > 0$, $a_X > 0$ или $v_{0X} < 0$, $a_X < 0$). Величина скорости при равноускоренном движении увеличивается с течением времени:

$$v = v_0 + at$$
.

Прямолинейное равнопеременное движение называется *равнозамед- ленным*, если векторы \vec{a} и \vec{v} противоположны по направлению (в этом случае $v_{0X} > 0$, $a_X < 0$ или $v_{0X} < 0$, $a_X > 0$). Величина скорости при равнозамедленном движении до момента остановки тела уменьшается с течением времени по закону:

$$v = v_0 - at$$
.

Графики зависимости величины скорости от времени v = v(t) для равноускоренного (а) и для равнозамедленного (б) движений приведены на рис.1.12. Из этих графиков видно что, тангенс угла α наклона линии графика к оси времени численно равен ускорению a тела.



Площадь заштрихованной на рис.1.12 области численно равна проекции вектора перемещения $\Delta \vec{r}$ на ось координат OX.

Пройденный телом путь S при равнопеременном движении можно вычислить по одной из формул:

а) при равноускоренном движении:

$$S = v_0 t + \frac{at^2}{2}, S = \frac{v^2 - v_0^2}{2a}, S = \frac{v + v_0}{2} \cdot t;$$

при
$$v_0 = 0$$
: $S = \frac{at^2}{2}$, $S = \frac{v^2}{2a}$, $S = \frac{v}{2} \cdot t$;

б) при равнозамедленном движении до момента остановки тела:

$$S = v_0 t - \frac{at^2}{2}, S = \frac{{v_0}^2 - v^2}{2a}, S = \frac{v + v_0}{2} \cdot t.$$

Графики зависимости S=S(t) для равнопеременного движения представлены на рис.1.13:

- а) равноускоренное движение (направления векторов \vec{a} и \vec{v} совпадают);
- б) равнозамедленное движение до момента остановки тела t (направления векторов \vec{a} и \vec{v} противоположны).

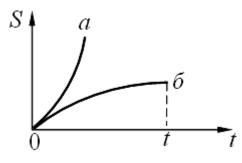


Рис. 1.13

Уравнение для координаты x точки, движущейся равнопеременно и прямолинейно, имеет следующий вид:

$$x(t) = x_0 + v_{0X}t + \frac{a_X t^2}{2},$$

где x_0 – координата в момент времени t=0, ее знак определяется положением точки на оси координат, а знаки ${\pmb v}_{0X}$ и a_X – направлением векторов скорости $\vec{{\pmb v}}$ и ускорения \vec{a} относительно оси OX.

1.7. Свободное падение тел

Свободным падением называется движение, совершаемое телом под действием силы тяжести без учета сопротивления воздуха.

Опыт показывает, что тело, участвующее в свободном падении, движется с постоянным ускорением \vec{g} , которое называется ускорением свободного

падения. Это ускорение направлено вертикально вниз, оно не зависит от массы падающего тел, но зависит от высоты над уровнем моря и географической широты. При малых высотах h ($h << R_3$, где R_3 – радиус Земли) модуль ускорения свободного падения в среднем приблизительно равен $9.8 \ m/c^2$.

При свободном падении тела с начальной скоростью \vec{v}_0 , направленной вертикально вниз (рис. 1.14), движение тела является равноускоренным прямолинейным, и для него справедливы все уравнения этого вида движения.

Модуль скорости тела в любой момент времени равен:

$$v = v_0 + gt$$
.

При начальной скорости v_0 =0 (тело начинает падение из состояния покоя) скорость тела в произвольный момент времени t равна v=gt .

В выбранной системе координат уравнение для координаты тела запишется следующим образом:

$$y = v_0 t + \frac{gt^2}{2}$$
 или $y = \frac{v^2 - {v_0}^2}{2g}$.

Путь h, пройденный телом в свободном падении к моменту времени t, может быть найден по одной из формул:

$$h = v_0 t + \frac{gt^2}{2}$$
 или $h = \frac{v^2 - v_0^2}{2g}$.

Если начальная скорость тела равна нулю ($v_0 = 0$), то

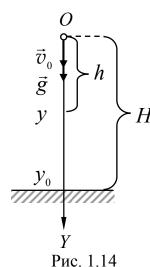
$$h=rac{gt^2}{2}$$
 или $h=rac{v^2}{2g}$.

В момент падения на землю $y=y_0=H$. Отсюда следует, что продолжительность свободного падения $t_{\rm пал}$ из состояния покоя

$$t_{\rm пад} = \sqrt{2H/g}$$
.

1.8. Движение тела, брошенного вертикально вверх

При этом виде движения до наивысшей точки подъема векторы скорости \vec{v} и ускорения \vec{g} противоположны по направлению (рис. 1.15). Следовательно, на участке подъема до наивысшей точки траектории дви-



жение тела является равнозамедленным и для него справедливы все уравнения этого вида движения.

Модуль вектора скорости тела в любой момент времени t равен:

$$v = v_0 - gt$$
.

Уравнения для координаты тела и пути, пройденным им к моменту времени t будут иметь следующий вид:

$$y = v_0 t - \frac{gt^2}{2}; \quad h = v_0 t - \frac{gt^2}{2};$$

или

$$y = \frac{{v_0}^2 - v^2}{2g} \quad h = \frac{{v_0}^2 - v^2}{2g}$$

Максимальная высота подъёма тела над точкой бросания (при достижении которой v=0)

$$H = \frac{v_0^2}{2g}.$$

Длительность промежутка времени, по истечении которого тело достигнет высоты H

$$t_{ ext{под}} = \frac{v_0}{g}$$
.

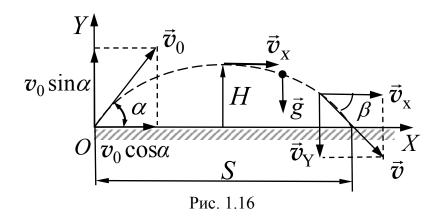
После прохождения наивысшей точки подъёма тело начинает свободное падение с начальной скоростью $v_0 = 0$.

На участке падения движение тела становится равноускоренным и для него справедливы все рассмотренные выше уравнения этого вида движения. При этом время падения $t_{\text{пад}} = t_{\text{под}}$, а скорость $v_{\text{к}}$, с которой тело вернется в точку бросания, $v_{\text{к}} = v_0$.

1.9. Движение тела, брошенного под углом к горизонту

Тело, брошенное с начальной скоростью \vec{v}_0 под углом α к горизонту участвует в двух движениях одновременно – в равномерном прямолинейном движении по горизонтали (на рис. 1.16 вдоль оси OX) с начальной скоростью $v_{0X} = v_0 \cos \alpha$ и в равнопеременном движении по вертикали (на рис. 1.16

вдоль оси OY) с начальной скоростью $m{v}_{0Y}=m{v}_0\sin \alpha$. Скорость тела в любой момент времени $m{\vec{v}}=m{\vec{v}}_X+m{\vec{v}}_Y$, а её модуль $m{v}=\sqrt{m{v}_X^2+m{v}_Y^2}$.



Проекции вектора скорости на оси координат и его модуль в произвольной точке траектории будут равны:

$$v_X = v_0 \cos \alpha, \ v_Y = v_0 \sin \alpha - gt,$$

 $v = \sqrt{v_X^2 + v_Y^2} = \sqrt{(v_0 \cos \alpha)^2 + (v_0 \sin \alpha - gt)^2}.$

Угол β , под которым вектор скорости \vec{v} направлен к горизонту в момент времени t, определяется соотношением:

$$tg\beta = \frac{v_Y}{v_X} = \frac{v_0 \sin \alpha - gt}{v_0 \cos \alpha}.$$

Уравнения для координат тела, брошенного со скоростью \vec{v}_0 под углом α к горизонту, будут иметь следующий вид:

$$x(t) = \boldsymbol{v}_{0X}t = \boldsymbol{v}_0 \cos \alpha t,$$

$$y(t) = v_{0Y}t + \frac{gt^2}{2} = v_0 \sin \alpha t - \frac{gt^2}{2}.$$

Максимальная высота подъёма тела $H = y_{\text{max}}$ может быть определена из условия, что в верхней точке траектории скорость горизонтальна и её проекция на ось OY равна нулю:

$$v_Y = 0 = v_0 \sin \alpha - gt_{\text{пол}}$$

Из этого выражения следует, что время подъема тела до верхней точки траектории

$$t_{\text{под}} = \frac{v_0 \sin \alpha}{g}$$
.

Максимальная высота подъёма:

$$H = v_0 \sin \alpha t_{\text{под}} - g \frac{t_{\text{под}}^2}{2} = \frac{v_0^2 \sin^2 \alpha}{2g}.$$

Дальность полета S можно найти из уравнений движения, используя условие, что в момент падения $x_{\max} = S$, y = 0 , а время полета t_{\min} равно удвоенному времени подъёма

$$t_{\text{пол}} = 2t_{\text{под}} = \frac{2v_0 \sin \alpha}{g}.$$

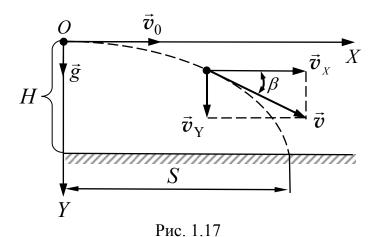
Подставляя эти значения в уравнения для координат, получаем:

$$S = (v_0 \cos \alpha)t_{\text{пол}} = \frac{v_0^2 \sin 2\alpha}{g}.$$

При заданной начальной скорости \vec{v}_0 максимальная дальность полёта тела достигается при α =45°.

Если тело брошено на некоторой высоте H с начальной скоростью \vec{v}_0 , направленной горизонтально (см. рис. 1.17), то модуль вектора скорости в любой момент времени

$$oldsymbol{v} = \sqrt{oldsymbol{v}_X^2 + oldsymbol{v}_Y^2} \; ,$$
где $oldsymbol{v}_X = oldsymbol{v}_0$, а $oldsymbol{v}_Y = oldsymbol{g} t$.



С учетом этого

$$v = \sqrt{v_0^2 + (gt)^2} \, .$$

Угол β , под которым вектор скорости \vec{v} направлен к горизонту, определяется соотношением:

$$tg\beta = \frac{v_Y}{v_X} = \frac{gt}{v_0}.$$

Время полёта тела

$$t_{\text{пол}} = t_{\text{пад}} = \sqrt{2H/g}$$
.

Дальность полёта тела по горизонтали

$$S = v_0 \sqrt{2H/g}$$

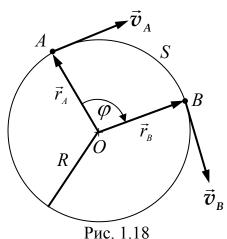
1.10. Равномерное движение по окружности

Движение по окружности является простейшим примером криволинейного движения. Положение материальной точки при этом виде движения (рис.1.18) задается в любой момент времени t либо длиной дуги S, равной пройденному за промежуток времени t пути, либо углом поворота ϕ радиус-вектора \vec{r} , определяющего положение материальной точки на траектории относительно центра окружности.

Движение по окружности называется равномерным, если за любые равные промежутки времени точка проходит одинаковые пути.

Modyль линейной скорости v материальной точки, движущейся по окружности, равен отношению пройденного пути (длине дуги) S к промежутку времени t, за который этот путь пройден

$$v = \frac{S}{t}$$
.



Угловой скоростью движения точки по окружности называется отношение угла поворота ϕ радиуса — вектора \vec{r} точки за промежуток времени t к длительности этого промежутка:

$$\omega = \frac{\varphi}{t}$$
.

Угол поворота φ (угловой путь) измеряют в радианах (pad), а угловую скорость в радианах в секунду (pad/c). Угол поворота можно также

измерять числом оборотов N, совершенных точкой за промежуток времени t. Связь между этими величинами устанавливается соотношением:

$$\varphi = 2\pi N$$
.

С учетом этого, выражение для угловой скорости принимает следующий вид:

$$\omega = \frac{\varphi}{t} = \frac{2\pi N}{t} = 2\pi v,$$

где величина $v = \frac{N}{t}$ — называется **частомой вращения**, равной числу полных оборотов, совершаемых точкой за единицу времени.

Величина, равная промежутку времени, в течение которого точка совершает один полный оборот, называется *периодом вращения*

$$T = \frac{1}{v}$$
.

Период вращения T можно выразить через линейную v и угловую ω скорости следующим образом:

$$T = \frac{2\pi R}{v} = \frac{2\pi}{\omega},$$

где R – радиус окружности, по которой движется материальная точка.

Пройденный материальной точкой к моменту времени t путь S и угол поворота ϕ определяются соотношениями:

$$S = v t$$
; $\varphi = \omega t$.

При этом линейный путь S и угол поворота φ связаны между собой равенством $S=R\varphi$, из которого следует связь между линейной и угловой скоростями: $\pmb{v}=\omega R$.

Так как при равномерном движении по окружности вектор линейной скорости \vec{v} точки изменяется по направлению, оставаясь постоянным по модулю, то точка движется с ускорением \vec{a}_n , модуль которого определяется следующими выражениями:

$$a_n = \frac{v^2}{R}$$
 или $a_n = \frac{\omega^2 R^2}{R} = \omega^2 R$.

Вектор ускорения \vec{a}_n направлен к центру окружности, и поэтому ускорение точки, равномерно движущейся по окружности, называют *цен- тростремительным* или нормальным.

От авторов

Возникли трудности в усвоении теоретического курса или в его применении при решении конкретных задач, тестов – записывайтесь на наши курсы и мы поможем Вам подойти к экзамену во всеоружии.

Наш адрес:

190031, г. Санкт-Петербург, Московский проспект, дом 9, ПГУПС, факультет довузовской подготовки.

Наши телефоны отдела заочной формы обучения:

8 (931) 214-51-45;

8 (812) 457-88-07.