ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I"

Кафедра «Высшая математика»

Е.А. Благовещенская

Методические указания по выполнению практических заданий по дисциплине «АЛГЕБРА И ГЕОМЕТРИЯ» (Б1.Б.13)

для специальности
10.05.03 «Информационная безопасность автоматизированных систем»

по специализации «Безопасность автоматизированных систем на железнодорожном транспорте»

Форма обучения – очная

РАЗДЕЛ 2. ТЕОРИЯ ЧИСЕЛ

Практическое занятие 2. Теория делимости в кольце целых чисел.

ПРИМЕРЫ

1. Найти (6188, 4709) и [6188, 4709].

Решение. Воспользуемся алгоритмом Евклида для нахождения (6188, 4709).

Ч

Таким образом, (6188, 4709) = 17. Для нахождения [6188, 4709] воспользуемся равенством: $a \cdot b = (a, b) \cdot [a, b]$. Следовательно,

$$[6188, 4709] = \frac{6188 \cdot 4709}{[6188, 4709]} = \frac{21939292}{17} = 1714076.$$

Ombem: (6188, 4709) = 17, [6188, 4709] = 1714076.

2. Решить систему уравнений, если $x, y \in \square$:

$$\begin{cases} x + y = 150, \\ (x, y) = 30. \end{cases}$$

Решение. Заметим, что равенство (x, y) = 30 равносильно системе:

$$\begin{cases} x = 30 \cdot u, \\ y = 30 \cdot v, \\ (x, y) = 1. \end{cases}$$

Подставляя выражения для x и y в первое уравнение исходной системы, получаем: u+v=5. Отсюда находим $u=1,\,2,\,3,\,4$ и $x=30,\,60,\,90,\,120$. Соответствующие значения для y находятся по формуле y=150-x.

Omeem:
$$\begin{cases} x_1 = 30 \\ y_1 = 120 \end{cases}; \begin{cases} x_2 = 60 \\ y_2 = 90 \end{cases}; \begin{cases} x_3 = 90 \\ y_3 = 60 \end{cases}; \begin{cases} x_4 = 120 \\ y_4 = 30 \end{cases}.$$

3. Решить уравнение: 7x + 13y = 2, если $x, y \in \square$.

Решение. Заметим, что (7,13) = 1. Согласно теореме об основных свойствах НОД, существуют целые числа u и v такие, что $7 \cdot u + 13 \cdot v = 1$. Найдем эти числа:

$$\begin{array}{ll}
13 = 7 \cdot 1 + 6, \\
7 = 6 \cdot 1 + 1.
\end{array} \Rightarrow \underline{1} = 7 - 6 \cdot 1 = 7 - (13 - 7 \cdot 1) \cdot 1 = \underline{7 \cdot 2 + 13 \cdot (-1)}.$$

Следовательно, u=2, v=-1. Умножим равенство $7 \cdot u + 13 \cdot v = 1$ на 2. Получим: $7 \cdot (2 \cdot u) + 13 \cdot (2 \cdot v) = 2$. Отсюда следует, что $x_0 = 2 \cdot u = 4$, $y_0 = 2 \cdot v = -2$ являются частными решениями исходного уравнения.

Составим систему:

$$\begin{cases} 7x + 13y = 2, \\ 7x_0 + 13y_0 = 2. \end{cases}$$

Вычитая из первого уравнения второе, получаем:

(*)
$$7(x-x_0) = -13(y-y_0)$$
.

Поскольку правая часть уравнения (*) делится на 13, то левая часть тоже должна делиться на 13, следовательно:

$$x - x_0 = 13 \cdot k$$
, где $k \in \square$.

Поскольку левая часть (*) делится на 7, то правая часть тоже должна делиться на 7, следовательно:

$$y - y_0 = 7 \cdot l$$
, где $l \in \square$.

Подставляем полученные выражения в (*):

$$7 \cdot 13 \cdot k = -13 \cdot 7 \cdot l \implies l = -k$$
.

Следовательно,
$$x = x_0 + 13 \cdot k = 4 + 13 \cdot k$$
 , $y = y_0 - 7 \cdot k = -2 - 7 \cdot k$, $k \in \square$.

Omeem:
$$x = 4 + 13 \cdot k$$
, $y = -2 - 7 \cdot k$, $k \in \square$.

Замечание. Уравнения вида ax + by = c, где $a, b, x, y \in \square$ называются $\partial u o \phi$ антовыми уравнениями.

Практическое занятие 3. Теория сравнений по модулю.

ПРИМЕРЫ

1. Найти остаток от деления 171^{2147} на 52.

Решение. Заметим, что (171,52) = 1. Вычислим $\varphi(52) = 24$. Тогда остаток от деления x:

$$x \equiv 171^{2147} \equiv 15^{24 \cdot 89 + 11} \equiv 15^{11} = (15^3)^3 \cdot 15^2 = (3375)^3 \cdot 225 \equiv (47)^3 \cdot 17 \equiv (-5)^3 \cdot 17 \equiv -21 \cdot 17 \equiv 7 \pmod{52}.$$

Ответ: остаток равен 7.

2. Найти остаток от деления 676^{221} на 28.

Решение. Заметим, что
$$(676,28) = 4$$
. Если $x \equiv 676^{221} \pmod{28}$, то $x = 4x_1$, $x_1 \equiv 169 \cdot 676^{220} \equiv 169 \cdot 676^{36 \cdot 6 + 4} \equiv 169 \cdot 676^4 \equiv 676^4 \equiv 4^4 \equiv 4 \pmod{7}$, и тогда $x \equiv 16 \pmod{28}$.

Ответ: остаток равен 16.

3. Доказать, что $1+3^x+9^x$ делится на 13, если x=3n+1, n=0,1,2,...

Решение. Покажем, что $1+3^x+9^x\equiv 0\ (\text{mod }13)$, если $x=3n+1,\ n=0,1,2,...$

$$1 + 3^{3n+1} + 9^{3n+1} \equiv 1 + 3 \cdot 27^n + 9 \cdot (-4)^{3n} \equiv 1 + 3 + 9 \cdot (-64)^n \equiv 4 + 9 \cdot 1^n = 13 \equiv 0 \pmod{13}.$$

4. На какую цифру заканчивается число 333^{777} ?

Решение. Решим сравнение $x \equiv 333^{777} \pmod{10}$.

$$x \equiv 333^{777} \equiv 3^{777} = 3 \cdot 3^{2 \cdot 388} = 3 \cdot 9^{388} \equiv 3 \cdot (-1)^{388} = 3 \pmod{10}$$
.

Ответ: последняя цифра 3.

Практическое занятие 4. Решение сравнений первой и второй степени.

Практическое занятие 5. Основные числовые функции.

Практическое занятие 6. Малая теорема Ферма, теорема Эйлера.

ПРИМЕРЫ

1. Решить сравнение $5x \equiv 4 \pmod{13}$.

Решение. Так как (5,13)=1, то сравнение имеет единственное решение. Найдем его по формуле $x\equiv a^{\varphi(m)-1}b\pmod{m}$. Вычислим $\varphi(13)=12$. Тогда $x\equiv 5^{12-1}\cdot 4=5^{11}\cdot 4=5\cdot 4\cdot 25^5\equiv 7\cdot (-1)^5=-7\equiv 6\pmod{13}$.

Ombem: $x \equiv 6 \pmod{13}$.

2. Решить сравнение $6x \equiv 7 \pmod{17}$.

Решение. Заметим, что (6,17) = 1, следовательно сравнение имеет единственное решение. Найдем обратный элемент к 6.

 $17u+6v=1 \Rightarrow u_0=-1, v_0=3$, следовательно $a^{-1}=3$. Умножаем сравнение: $3\cdot 6x\equiv 3\cdot 7 \pmod{17}, \ x\equiv 21\equiv 4 \pmod{17}$.

Omeem: $x \equiv 4 \pmod{17}$.

3. Решить сравнение $93x \equiv 42 \pmod{15}$.

Решение. Так как (93,15)=3 и 42 делится на 3, то сравнение имеет три решения. Делим обе части сравнения и модуль на 3. Получаем сравнение $31x\equiv 14\ (\text{mod }5)$. Решим это сравнение $x\equiv 31^4\cdot 14\equiv 1^3\cdot (-1)\equiv -1\equiv 4\ (\text{mod }5)$. Следовательно решениями будут:

 $x \equiv 4 \pmod{15}$;

 $x \equiv 4 + 5 \pmod{15} \equiv 9 \pmod{15}$;

 $x \equiv 4 + 5 \cdot 2 \pmod{15} \equiv 14 \pmod{15}$.

Omeem: $x \equiv 4 \pmod{15}$; $x \equiv 9 \pmod{15}$; $x \equiv 14 \pmod{15}$.

4. Решить сравнение $55x \equiv 7 \pmod{87}$.

Решение. Так как (55, 87) = 1, то сравнение имеет единственное решение. Решение найдем по формуле $x \equiv (-1)^{S-1} b P_{S-1} \pmod{m}$.

Разложим $\frac{87}{55}$ в непрерывную дробь:

$$\frac{87}{55} = 1 + \frac{32}{55} = 1 + \frac{1}{\frac{55}{32}} = 1 + \frac{1}{1 + \frac{23}{32}} = 1 + \frac{1}{1 + \frac{1}{\frac{32}{23}}} = 1 + \frac{1}{1 + \frac{1}{\frac{1}{1 + \frac{1}{23}}}} = 1 + \frac{1}{1 + \frac{1}{\frac{1}{1 + \frac{1}{23}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2}}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{4}}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}} = 1 + \frac{1}{1 + \frac{1}{4}} = 1 +$$

Поэтому

$$x \equiv (-1)^6 \cdot 7 \cdot P_6 \pmod{87} \equiv 133 \pmod{87} \equiv 46 \pmod{87}.$$

Omsem: $x \equiv 46 \pmod{87}$.

Практическое занятие 7. Решение систем сравнений.

ПРИМЕРЫ

1. Решить систему сравнений
$$\begin{cases} x \equiv 5 \pmod{13} \\ x \equiv 3 \pmod{7} \end{cases}$$

Решение. Так как (13,7)=1, то система сравнений имеет решение. Из первого сравнения имеем $x=13\cdot t+5$. Поскольку этот x должен удовлетворять и второму сравнению, то $x=13\cdot t+5\equiv 3\ (\text{mod }7)$. Таким образом, для t получили сравнение $13\cdot t\equiv -2\ (\text{mod }7)$. Находим решение для t: $t\equiv 13^5\cdot (-2)\equiv (-1)^5\cdot (-2)=2\ (\text{mod }7)$, т.е. $t=7\cdot l+2$. Подставляем значение t в выражение для x: $x=13\cdot (7\cdot l+2)+5=91\cdot l+31$ или $x\equiv 31\ (\text{mod }91)$.

Omsem: $x \equiv 31 \pmod{91}$.

2. Решить систему сравнений
$$\begin{cases} x \equiv 2 \pmod{7} \\ x \equiv 5 \pmod{9} \\ x \equiv 11 \pmod{11} \end{cases}$$

Решение. Сначала решим систему, состоящую из первых двух сравнений. Так как (7,9)=1, то система совместна. Имеем: $x=9\cdot t+5\equiv 2\pmod{7}$, $2\cdot t\equiv 3\pmod{7}$, $t\equiv 2\pmod{7}$. Таким образом, первоначальная система эквивалентна системе:

$$\begin{cases} x \equiv 23 \pmod{63} \\ x \equiv 11 \pmod{15} \end{cases}$$

В этой системе (63,15) = 3 и 23-11=12 делится на 3, следовательно, система совместна.

$$x = 63 \cdot l + 23 \equiv 11 \pmod{15}, \ 3 \cdot l \equiv 3 \pmod{15}, \ l \equiv 1 \pmod{5}, \ y = 5 \cdot m + 1,$$

 $y = 5 \cdot m + 1, \ x = 63 \cdot (5 \cdot m + 1) + 23 = 315 \cdot m + 86, \ x \equiv 86 \pmod{315}.$
Omeem: $x \equiv 86 \pmod{315}$.